- Details
- Last Updated: 15 March 2021 15 March 2021
Article Index
Page 8 of 8
References
- Berg CP et al, “Human Mature Red Blood Cells Express Caspase-3 and Caspase-8, but are Devoid of Mitochondrial Regulators of Apoptosis,” Cell Death Differ 8, no. 12 (2001): 1197-1206.
- Montgomery R et al, Biochemistry: A Case-Oriented Approach 3rd ed. St. Louis: C.V. Mosby Co., 1980.
- Wu I-C et al, “Metabolic Analysis of 13C-labeled Pyruvate for Noninvasive Assessment of Mitochondrial Function,” Annals NY Acad Sci 1201 (2010): 111-120.
- Adam-Vizi V, Chinopoulos C, “Bioenergetics and the Formation of Mitochondrial Reactive Oxygen Species,” Trends Pharmacol Sci.12 (2006): 639-45.
- Cadenas E, Davies KJ, “Mitochondrial Free Radical Generation, Oxidative Stress, and Aging,” Free Radic Biol Med. 29 no.3-4 (2000): 222-30.
- Lo M-C et al, “Glycoxidative Stress-induced Mitophagy Modulates Mitochondrial Fates,” Annals NY Acad Sci 1201 (2010): 1-7.
- Smith R, Murphy M, “Animal and Human Studies with the Mitochondrial-targeted Antioxidant MitoQ,” Annals NY Acad Sci 1201 (2010): 96-103.
- Wikipedia (2011). “Lactic acidosis.” http://en.wikipedia.org/wiki/Lactic_acidosis. Retrieved March 4, 2011.
- Hochachka PW, Mommsen TP, "Protons and anaerobiosis," Science 219 (1983): 1391–1397.
- Houten SM, Wanders RJA, “A General Introduction to the Biochemistry of Mitochondrial Fatty Acid β-oxidation,” J Inherit Metab Dis 33 (2010): 469-477.
- Foster DW, “The Role of the Carnitine System in Human Metabolism,” Annals NY Acad Sci 1033 (2004): 1-16.
- Berardo A et al, “A Diagnostic Algorithm for Metabolic Myopathies,” Curr Neurol Neurosci Rep 10, No. 2 (2010): 118-126.
- Famularo G et al, “Carnitines and its Congeners,” Annals NY Acad Sci 1033 (2004): 132-138.
- Schulz H, “Regulation of Fatty Acid Oxidation in Heart,”. J Nutr 124 (1994): 165–171.
- Howell N, “Human Mitochondrial Diseases: Answering Questions and Questioning Answers, Int Rev Cytol 186 (1999): 49-116.
- Zeviani M, Antozzi C, “Defects of Mitochondrial DNA,” Brain Pathol 2 No. 2 (1992): 121-132.
- Chavis JC (2009). “Who Discovered the Mitochondria?” http://www.brighthub.com/science/genetics/articles/26365.aspx. Retrieved March 13, 2011.
- Clay A et al, “Mitochondrial Disease,” Chest 120 (2001): 634-648.
- Wu C-L et al, “ Neuroprotective Mechanisms of Brain-derived Neurotrophic Factor Against 3-Nitropropionic Acid Toxicity: Therapeutic Implications for Huntington’s Disease,” Annals NY Acad Sci 1201 (2010): 8-12.
- Eastman P, “Investigators Focus on Mitochondrial Dysfunction Across the Life Spectrum,” Neurol Today April 15, 2010: 18-19.
- Adam-Vizi V, “Production of Reactive Oxygen Species in Brain Mitochondria: Contribution by Electron Transport Chain and Non-electron Transport Chain Sources,” Antioxid Redox Signal 7, no. 9-10 (2005): 1140-1149.
- Jung H S, Lee M-S, “Role of Autophagy in Diabetes and Mitochondria,” Annals NY Acad Sci 1201 (2010): 79-83.
- Wang C-H et al, “Mitochondrial Dysfunction in Insulin Insensitivity: Implication of Mitochondrial Role in Type-2 Diabetes,” Annals NY Acad Sci 1201 (2010): 157-165.
- Abdul-Ghani MA, DeFronzo RA, “Mitochondrial Dysfunction, Insulin Resistance and Type-2 Diabetes Mellitus,” Cur Diab Rep 8, No. 3, (2008): 173-178.
- Holloway G, “Mitochondrial Function and Dysfunction in Exercise and Insulin Resistance,” Applied Physiology, Nutrition and Metabolism June 1 (2009).
- Maassen JA, “Mitochondria, Fatty Acids, and Type-2 Diabetes Mellitus—What Is the Connection?” European Endocrine Disease Issue 2 (2006): 13-15. Retrieved from http://www.touchendocrinology.com/articles/mitochondria-fatty-acids-and-type-2-diabetes-mellitus-what-connection March 22, 2011.
- Sivitz W, Yorek M, “Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities,” Antioxidants & Redox Signaling 12, no. 4 (2010): 537-579.
- Kim J et al, “Role of Mitochondrial Dysfunction in Insulin Resistance,” Circ Res 102, no. 4 (2008): 401-414.
- Peppa M et al, “ Skeletal Muscle Insulin Resistance in Endocrine Disease,” J Biomed Biotech (2010), Article ID 527850. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840413/ March 22, 2011.
- Vermuelen R et al, “Patients with Chronic Fatigue Syndrome Performed Worse than Controls in a Controlled Repeated Exercise Study Despite a Normal Oxidative Phosphorylation Capacity,” J Translational Med 8 (2010): 93-100.
- Kennedy G et al, “Oxidative Stress Levels are Raised in Chronic Fatigue Syndrome and Are Associated with Clinical Symptoms,” Free Radical Biology and Medicine 39 (2005): 584-589.
- Paul L et al, “Demonstration of Delayed Recovery from Fatiguing Exercise in Chronic Fatigue Syndrome,” European Journal of Neurology 6 (1999): 63-69.
- Arnold D L et al, “Excessive Intracellular Acidosis of Skeletal Muscle on Exercise in a Patient with a Post-viral Exhaustion/Fatigue Syndrome,” Lancet 323, no. 8391 (1984): 1367- 1369.
- Behan WMH et al, “Mitochondrial Abnormalities in the Postviral Fatigue Syndrome,” Acta Neuropathologica 83, no. 1 (1991): 61-65.
- Plioplys AV, Plioplys S, “Electron-microscopic Investigation of Muscle Mitochondria in Chronic Fatigue Syndrome,” Neuropsychobiology 32, no. 4 (1995): 175-181.
- Plioplys AV, Plioplys S, “Serum Levels of Carnitine in Chronic Fatigue Syndrome: Clinical Correlates,” Neuropsychobiology 32, no. 3 (1995): 132-138.
- Kuratsine H et al, “Acylcarnitine Deficiency in Chronic Fatigue Syndrome,” Clin Infect Dis 18, Suppl 1 (1994): S62-S67.
- Lane RJ et al, “Heterogeneity in Chronic Fatigue Syndrome: Evidence from Magnetic Resonance Spectroscopy of Muscle,” Neuromuscul Disord 8, nos. 3-4 (1998): 204-209.
- Chazotte B, “Mitochondrial Dysfunction in Chronic Fatigue Syndrome,” Chapter 21. In Mitochondria in Pathogenesis, edited by Lemasters and Nieminen, 393-411. New York, NY: Kluwar Academic/Plenum Publishers, 2001.
- Myhill S et al, “Chronic Fatigue Syndrome and Mitochondrial Dysfunction,” Int J Clin Exp Med 2 (2009): 1-16.
- Nicholson G, Ellithorpe R, “Lipid Replacement and Antioxidant Nutritional Therapy for Restoring Mitochondrial Function and Reducing Fatigue in Chronic Fatigue Syndrome and Other Fatiguing Illnesses,” J CFS 13, no. 1 (2006): 57-68.
- Bazelmans E et al, “Impact of a Maximal Exercise Test on Symptoms and Activity in Chronic Fatigue Syndrome.” J Psychosom Res 59, no. 4 (2005): 201-208.
- Van Ness J et al, “Postexertional Malaise in Women with Chronic Fatigue Syndrome,” J Womens Health 19, no. 2 (2010): 239-244.
- Jammes Y et al, “Chronic Fatigue Syndrome: Assessment of Increased Oxidative Stress and Altered Muscle Excitability in Response to Incremental Exercise,” Journal of Internal Medicine 257 (2005): 299-310.
- VanNess J et al, “Diminished Cardiopulmonary Capacity During Post-Exertional Malaise,” J CFS 14, no. 2 (2007): 77-85.
- Wikipedia (2011). “ Muscle Fatigue.” http://en.wikipedia.org/wiki/Muscle_fatigue. Retrieved March 28, 2011.
- Sweet DE, “Metabolic Complications of Antiretroviral Therapy,” Top HIV Med 13, no. 2 (2005): 70-74.
- Lane RJM et al, “Muscle Fibre Characteristics and Lactate Responses to Exercise in Chronic Fatigue Syndrome,” J Neurol Neurosurg Psychiatry 64 (1998): 362-367.
- Roth SM, “Why does lactic acid build up in muscles? And why does it cause soreness?” Sci Amer Jan 23, 2006. http://www.scientificamerican.com/article.cfm?id=why-does-lactic-acid-buil. Retrieved March 28, 2011.
- DiMauro S et al, “Mitochondrial Encephalomyopathies: Therapeutic Approach,” Annals NY Acad Sci 1011 (2004): 232-245.
- Personal communication from Donald Johns, M.D. when he was chairperson of Neurology at Beth Israel-Deaconess Hospital in Boston, MA.
- Genova ML et al, “The Mitochondrial Production of Reactive Oxygen Species in Relation to Aging and Pathology,” Annals NY Acad Sci 1011 (2004): 86-100.
- Meng S-J, Yu L-J, “Oxidative Stress, Molecular Inflammation and Sarcopenia,” Int J Mol Sci 11 (2010): 1509-1526.
- Dinarello CA, “Interleukin 1 and Its Biologically Related Cytokines.” In Advances in Immunology Vol 44, edited by Frank Dixon, 153-205. New York, NY: Academic Press Inc, 1989.
- Dinarello CA, Cannon JG, “Interleukin 1.” In Progress in Immunology VI edited by B Cinader and RG Miller, 449-457. Orlando, FL: Academic Press Inc, 1986.
- Hendler SS and Rorvik D, editors. PDR for Nutritional Supplements, 1st edition. Montvale, NJ: Thomson PDR, 2001.
- Mukhopadhyay A, Weiner H, “Delivery of Drugs and Macromolecules to Mitochondria,” Adv Drug Deliv Rev 59, no. 8 (2007): 729-738.
- Smith RAJ et al, “Mitochondria-Targeted Antioxidants in the Treatment of Disease,” Annals NY Acad Sci 1147 (2008): 105-111.
- Jason LA et al, “The Energy Envelope Theory and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome,” AAOHN J 56, no. 5 (2008): 189-195.
- Jason LA et al, “Provision of Social Support to Individuals with Chronic Fatigue Syndrome,” J Clin Psychol 66, no.3 (2010) : 249-58.
- Brown M et al, “The Role of Changes in Activity as a Function of Perceived Available and Expended Energy in Nonpharmacological Treatment Outcomes for ME/CFS,” J Clin Psychol 67, no. 3 (2011):253-60.
- Jason LA, Benton M, “The Impact of Energy Modulation on Physical Functioning and Fatigue Severity Among Patients with ME/CFS,” Patient Educ Couns 77, no. 2 (2008): 237-241.
- Personal observation by the author, who has had CFS/ME since 1957.
- Jason LA et al, “CFS Prevalence and Risk Factors over Time,” Health Psychol 11 ( 2011) epub.
- Friedberg F et al, “Symptom Patterns in Long-Duration Chronic Fatigue Syndrome,” J Psychosomatic Research 48 (2000): 59-68.
- Singh U, Jialil I, “Alpha-Lipoic Acid Supplementation and Diabetes,” Nutr Rev 66, no. 11 (2008): 646-657.
- Morré D et al, “Surface Oxidase and Oxidative Stress Propagation in Aging,” J Experimental Biol 203 (2000): 1513-1521.
- Maes M et al, “Coenzyme Q10 Deficiency in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is Related to Fatigue, Autonomic and Neurocognitive Symptoms and is Another Risk Factor Explaining the Early Mortality in ME/CFS Due to Cardiovascular Disorder,” Neuro Endocrinol Lett 30, no.4 (2009): 470-6.
- Kowaltowski AJ, Vercesi AE., “Mitochondrial Damage Induced by Conditions of Oxidative Stress,” Free Radic Biol Med 26, no.3-4 (1999): 463-71.
- Personal communication from Fred Hochberg, MD, a neurologist at Massachusetts General Hospital, Boston and professor of the Harvard Medical School.
- Killilea DW, Ames BN, “Magnesium Deficiency Accelerates Cellular Senescence in Cultured Human Fibroblasts,” Proc Natl Acad Sci USA 105 (2008): 5768-5773.
- Bonakdar RA, Guarneri E, “Co-Enzyme Q-10,” Am Fam Physician 72, no.6 (2005): 1065-1070.
- Wray DW et al, “Antioxidants and Aging: NMR-based Evidence of Improved Skeletal Muscle Perfusion and Energetics,” Am J Physiol Heart Circ Physiol 297 (2009): H1870-H1875.
- Choi E-Y, Cho Y-O, “Effect of Vitamin B-6 Deficiency on Antioxidative Status in Rats with Exercise-Induced Oxidative Stress,” Nutrition Res Practice 3, no. 3 (2009): 208-211.
- Wolf B, Feldman GL, “The Biotin Dependent Carboxylase Deficiencies,” Am J Hum Genet 34 (1982): 699-718.
- Roth KS, “Biotin in Clinical Medicine,” Am J Clin Nutri 34 (1981): 1967-1974.
- Adhihetty PJ, Flint MF, “Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases,” Neuromolecular Med 10, no. 4 (2008): 275-290.
- Young JF et al, “Creatine-Induced Activation of Antioxidative Defense in Myotube Cultures Revealed by Exploratory NMR-based Metabomics and Proteomics,” JISSN 2010: 7-9.
- Naviaux R, “A Primary Care Physician’s Guide: The Spectrum of Mitochondrial Disease,” Exceptional Parent Magazine 27, no. 8 (1997). Retrieved from http://biochemgen.ucsd.edu/mmdc/ep-3-10.pdf on March 31, 2011.
- Anecdotal evidence from CFS/ME patients and description of information from the PDR as explained in our article "Review of Nutritional Supplements Used for CFS/ME/FM."
- Recommended by Charles Lapp MD and other ME/CFS specialists as explained in our article "Supplements."
- St. Amand P, “The Use of Guaifenesin in Fibromyalgia,” Fibromyalgia Treatment Center, http://www.fibromyalgiatreatment.com/Uricosuric%20 June%202009.pdf. Retrieved April 3, 2011.
- Wikipedia (2011). “Guaifenesin.” http://en.wikipedia.org/wiki/Guaifenesin Retrieved April 3, 2011.
- Maes M, Twisk FNM, “Chronic Fatigue Syndrome: Harvey and Wessley’s (Bio)psychosocial Model Versus a (Bio)psychosocial Model Based on Inflammatory and Oxidative and Nitrosative Stress Pathways,” BMC Medicine 8 (2010): 35-48.
- Lapp C, “Stepwise Approach to Fibromyalgia and Chronic Fatigue Syndrome,” Pro Health Library 2002. http://www.prohealth.com/library/showarticle.cfm?id=3714&t=CFIDS_FM Retrieved April 3, 2011.
Health care providers might also want to consult the 2014 ME/CFS: A Primer for Clinical Practitioners.